
Computer-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Computer-Assisted Language Comparison in Practice
Volume 8, Number 1
URL: https://calc.hypotheses.org/8267 DOI: 10.15475/calcip.2025.1.4
Published under a Creative Commons Attributions 4.0 LICENSE
Published on 28/04/2025

PyLexibench —Generating Data forLexibench with aPython Package
Luise Häuser / Robert Forkel / Johann-Mattis List
Computational Molecular Evolution Group / DLCE/ Chair for Multilingual Computational LinguisticsHeidelberg Institute for Theoretical Studies / MPI-EVA Leipzig / University of Passau

With PyLexibench we introduce a small Python package that can be used to populate the
Lexibench benchmark for computational historical linguistics with benchmark data. Here,
we introduce the package and show how it helps to access and expand Lexibench. We also
introduce new data for character matrices in various forms and formats and lay out how
we intend to use the package to manage Lexibench releases in the future.

1 Introduction
A selection of suitable datasets is the basis for meaningful benchmarks. Benchmarks
themselves are of great importance in the development of computational methods that
address general and more specific tasks in a discipline. After recently introducing
Lexibench as a collection of benchmark data for computational historical linguistics
(Häuser and List 2025), we felt the need to complement the database with more regular
means to access and modify the data in order to allow scholars to adjust the benchmark
for targeted applications. We therefore decided to create a small Python package that
would conduct this task. As a result, Lexibench is now complement with PyLexibench,
a Python package that provides standardized access to data from the Lexibank
repository (Blum et al. 2025).

While we provided custom scripts that would help to download and arrange the data
when introducting Lexibench previously, PyLexibench now formalizes this process.
After installing PyLexibench, all one needs to download and prepare Lexibench data is
a valid table with links to CLDF datasets that can be used to populate individual
Lexibench repositories (see § 4). In addition, we have now also extended the codebase

https://doi.org/10.15475/calcip.2025.1.4
https://calc.hypotheses.org/8267

CALCiP Volume 8, Number 1

26

in such a way that various character matrices for Lexibench datasets can be constructed
as well. These matrices — provided in common forms typically used in phylogenetic
software packages — can then be directly used for all kinds of experiments (see § 3.3).
In addition, PyLexibench now also allows for the direct integration of Glottolog, from
which reference trees can now be retrieved to form gold standard trees that may come
in handy during evaluation.

In the following, we will first give a very brief background on the kind of data that
can be assembled with PyLexibench. We will then introduce in detail the basic aspects
of the data and the methods that PyLexibench offers, putting a particular emphasis on
the creation of character matrices in various flavors. Following this overview, we will
then share a concrete example that runs interested users through the major process of
creating benchmark data from collections of CLDF datasets with the help of
PyLexibank. We conclude by pointing to future plans and open questions that we
encountered when working towards a first official release of Lexibench and
PyLexibench.
2 Background
Computational tools from phylogenetics are now commonly applied in historical
linguistics. This quantitative turn (Geisler and List 2022) is reflected in the fact that
almost all recent linguistic studies on phylogenetic reconstruction work with
computational approaches. It has also led to a surge in new phylogenies for many of the
world’s larger and smaller language families (Greenhill et al. 2023, Savelyev et al. 2020,
Kassian et al. 2021).

Experiments based on cognate data usually consist of a multi-stage pipeline (see
Geisler and List 2010, Häuser et al. 2024, and Häuser et al. 2024b). In a first step,
wordlists are extracted from the native cognate data. In the second step, the datasets are
encoded as character matrices based on these word lists. As a rule, these are binary
character matrices, but there are also alternative representations (see Häuser et al.
2024b), which we outline below. The character matrices are then used as input for
phylogenetic inference. To score the resulting trees, these trees are compared to the gold
standard from Glottolog. This requires the extraction of a reference tree suitable for the
respective cognate dataset. PyLexibench covers three main steps of such a pipeline,
namely the extraction of wordlists, the construction of character matrices and the
extraction of reference trees.

Häuser et al. 2025 PyLexibench

27

3 Materials and Methods
3.1 CLDF Datasets from the Lexibank Repository
Main data underlying PYLe are CLDF datasets that conform to the particular
requirements for CLDF wordlists to be included as part of the Lexibank repository
(Blum et al. 2025). Lexibank itself offers a large wordlist along with computed phonetic
and lexical features inferred from standardized wordlists, but the core idea of Lexibank
is not only to share an aggregated database but more importantly to assemble individual
CLDF datasets that share enough basic structures to allow for the direct comparison and
integration without having to tweak the data by any additional computational means.

The core of each Lexibank version is a table that provides links to the destinations
from which CLDF datasets that conform to the extended requirements for Lexibank
datasets can be downloaded. These are represented via a DOI that itself links to the
Zenodo archive (https://zenodo.org), as well as a link to the GIT repository (currently
assuming data to be curated on GitHub), where the actual version of individual CLDF
datasets can be found.

We use the basic structure of this table, which is available in the form of a TSV file,
as the base from which we populate Lexibench datasets. A Lexibench dataset in this
form is nothing else then a dataset that was created with the help of PyLexibench and
that provides a specific TSV file that provides information on the download locations.
The file that we use is the same one that we shared along with the first Lexibench dataset
(Häuser and List 2025), which in turn was taken from the release of Lexibank 2 (Blum
et al. 2025) and modified by deleting those datasets that we did not consider as suitable
for the inclusion into a benchmark database that provides gold standard cognate sets
provided by experts. In this form, it can be found in the folder etc under the filename
lexibank.tsv in the official Lexibench repository (https://codeberg.org/
lexibank/lexibench).

The simplicity of the format (requiring only a TSV file placed in a particular folder
of a repository) should make it easy to provide new releases of Lexibench in the future,
while at the same time allowing colleagues to create their own releases of Lexibench,
depending on the data that they require in their studies.
3.2 The PyLexibank Software Package
PyLexibank is a Python package that is constructed in such a way that its commands
can all be invoked from the command line. We are still working on the first release of
the package (which would then also lead to an official release of Lexibench), but the
package can be easily installed by downloading the data with GIT and then installing

https://zenodo.org)/
https://codeberg.org/lexibank/lexibench
https://codeberg.org/lexibank/lexibench

CALCiP Volume 8, Number 1

28

the package via the command line from a fresh virtual environment, as shown below
(using the release 1.0 that we used for this study).
$ pip install pylexibench
$ lexibench --help

The main website of the project (curated on Codeberg, https://codeberg.org/
lexibank/pylexibench) provides detailed instructions on how to run the package in order
to download and prepare several different kinds of datasets for phylogenetic analysis in
comparative linguistics.
3.3 Construction of Character Matrices
As a feature we newly introduced, we now construct different kinds of character
matrices in Lexibench. These are derived from the annotated cognate sets and can be
directly loaded from various software tools for phylogenetic reconstruction.

A cognate dataset for a given concept list and a set of languages can be understood
as an assignment of a set of words to each language-concept pair. Words that share a
common ancestor are grouped together in cognate sets (List 2016). From these
groupings, we generate a matrix that assigns a set of cognate sets to each language-
concept pair. It serves as the basis for the construction of the different character matrix
types that can later be used in phylogenetic reconstruction. We usually assume that the
concept lists are well-constructed, meaning that each language has at least one word for
every concept. If there is no word provided for a particular language-concept pair in the
original data, we treat it as missing information. If there is more than one word provided
for a language-concept pair, we call this a polymorphism. Table 1 shows the structure
of a typical cognate dataset, consisting of the triple of Language, Concept, and (Word)
Form, to which cognate sets are assigned.

Language Concept Form Cognate Set
English BIG big big_1
English BIG great big_2
German BIG groß big_2
Dutch BIG groot big_2
Norwegian BIG stor big_3
Swedish BIG stor big_3

Table 1: Basic structure of typical datasets.

https://codeberg.org/lexibank/pylexibench
https://codeberg.org/lexibank/pylexibench

Häuser et al. 2025 PyLexibench

29

A cognate dataset can be represented by a binary character matrix using the symbols
0 and 1. We obtain it as the presence-absence-matrix corresponding to the matrix
containing the cognate sets. In a binary character matrix, each concept is represented
by as many columns as there are cognate sets with each column corresponding to a
specific cognate set. If a language has a word belonging to a particular cognate set, the
corresponding entry is set to 1. Otherwise, it is set to 0. We assume that for each concept
there exists at least one word in every language. If no cognate set is provided for a
language-concept pair, this is treated as missing information, and all corresponding
columns for that concept are marked by a specific character indicating missing data
(normally a dash in computational approaches). The tabular information can be stored
in different formats that can then be used as input for phylogenetic reconstruction
methods, typically designed for the application in bioinformatics. Among these formats,
PyLexibench by now supports export to the general Nexus format (Maddison et al.
1997) that can be used in many different software packages, and the so-called Relaxed-
Phylip format, which was originally designed for the Phylip software package
(Felsenstein 2021) but is now supported by many more software tools. Table 2 shows
the binary character matrix corresponding to the small cognate dataset in Table 1.

Language big_1 big_2 big_3
English 1 1 0
German 0 1 0

Dutch 0 1 0
Norwegian 0 0 1

Swedish 0 0 1Table 2: Binary character matrix corresponding to the cognate dataset in Table 1.
Cognate datasets can also be represented by a multi-state character matrix. The binary

matrix representation splits the meaning slot into as many cognate sets as one can
observe. It models the evolution of the cognate sets as a process of cognate gain and
cognate loss that proceeds independently of the original meaning that the cognate words
express in the languages under consideration. The basic unit in which evolution happens
in a multi-state model is the concept itself. Here, language change is no longer modeled
as a process in which new words are gained and old words are lost, but rather as a
process in which a given meaning is expressed by different word forms that may
alternate during language change (see List 2016 for a closer discussion of binary state
representations compared to multi-state representations in phylogenetic approaches in
historical linguistics).

https://doi.org/10.3030/101087081

CALCiP Volume 8, Number 1

30

A considerable draw-back of multi-state representations is not trivial to model those
cases where we find two word forms for one concept in the same language. These cases
of synonymy, leading to polymorphisms in phylogenetic datasets, are usually excluded
when modeling the evolution of cognate sets in multi-state approaches. However, some
approaches allow to handle them.

Another limitation of multi-state approaches is that software created for applications
in biology usually works with a limited number of different character states — that is,
cognate sets per concept. Thus, the MULTISTATE alphabet used in RAxML-NG
(Kozlov et al. 2019), for example, only offers 64 different symbols. While this may be
enough to model cognate sets with multi-state representations for several dozen
languages (64, if we assume that polymorphisms would have been actively resolved
beforehand), it would quickly become insufficient when working with language families
consisting of more than a hundred languages, such as Indo-European or Austronesian.

Nevertheless, since there is a sufficient number of datasets in Lexibench that qualify
for a multi-state representation, PyLexibench allows to create multi-state character
matrices from cognate datasets that follow the traditional Phylip format for the
representation of multiple sequence alignments.

The character matrices described so far are all in a sense deterministic, as we assume
that a fixed symbol is observed at each column for each language. In contrast, a
probabilistic character matrix allows for multiple symbols to occur with specific
probabilities, which are explicitly provided in the matrix. To represent missing data we
explicitly set the probabilities for all symbols to 1.0 (Kozlov et al. 2019), which is an
encoding that does not provide any information.

Probabilistic character matrices can be leveraged for cognate data by interpreting the
datasets in a probabilistic manner. If there are several synonyms for a concept in a
language, it can be simplified to assume that each of these synonyms occurs with the
same probability. Using this approach, we can construct both probabilistic binary and
multistate character matrices.

In a probabilistic binary state character matrix, each concept is represented by as
many columns as there are cognate sets, just like in its deterministic counterpart. Let us
consider the cognate set of one of the k synonyms existing for a particular language-
concept pair. At the corresponding entry in the matrix we observe the symbol 1 with the
probability 1/k and the symbol 0 with the probability 1 – 1/k. In the case of English big
and great, as used in the previous examples, k would be 2 and the probabilities that we
must fill in for the cognate sets big_1 and big_2 are 0.5 for 1 and 0, respectively, in both
cognate sets. We represent these probabilities with the help of tuples of two numbers,
the first number represents the probability that the character is not present and therefore

Häuser et al. 2025 PyLexibench

31

corresponding to a 0 in a non-probabilistic binary matrix, while the second number
represents the probability of observing a character, corresponding to a 1, respectively.
Table 3 illustrates this coding for our little toy sample of Germanic words for “big”.
Cognate Set big_1 big_1 big_2 big_2 big_3 big_3States 0 1 0 1 0 1English 0.5 0.5 0.5 0.5 1.0 0.0German 1.0 0.0 0.0 1.0 1.0 0.0Danish 1.0 0.0 0.0 1.0 1.0 0.0Norwegian 1.0 0.0 1.0 0.0 0.0 1.0Swedish 1.0 0.0 1.0 0.0 0.0 1.0Table 3: Probabilistic binary character matrix where cognate sets represent the basic unit of evolution
and character states can be 0 or 1.

In a probabilistic multi-state character matrix, the basic character is the concept and
cognate sets correspond to the different states that the character can take. Probabilities
for each state are again represented by floating point numbers, and provided for each
state. Polymorphisms are handled in the same way as they are in probabilistic binary
state character matrices, with the exception that each cognate set is represented by one
number between 0 (character state is not active) and 1 (character state is active).
Synonyms can again be easily handled by assigning the probability 1/k to each state.

Concept big big big
States big_1 big_2 big_3
English 0.5 0.5 0.0
German 0.0 1.0 0.0
Danish 0.0 1.0 0.0
Norwegian 0.0 0.0 1.0
Swedish 0.0 0.0 1.0

Table 4: Probabilistic multi-state character matrix where concepts represent the basic units and
cognate sets represent character states.

To write probabilistic character matrices to files, PyLexibench uses the dedicated
CATG format introduced by Kozlov et al. (2019). RAxML-NG fully supports this
format in its tree inferences (details can be found in Häuser et al. 2024b).

For each dataset, PyLexibench extracts two sets of character matrices. While for the
first set, all avaible data is taken into account, the second set of character matrices is
selected in such a way that it is fully compatible with Glottolog’s phylogenies. This
means that it only contains data for languages, for which Glottocodes have been

https://github.com/amkozlov/raxml-ng/wiki/Input-data#catg-file-format

CALCiP Volume 8, Number 1

32

provided. As a result, character matrices in the second set can be smaller compared to
those in the first set regarding the number of languages. The advantage of these smaller
datasets is, however, that any the trees inferred from compatible character matrices can
be compared to the Glottolog classification and thus use it as a rudimentary gold
standard to evaluate the accuracy of phylogenetic inference approaches (Rama et al.
2018).
3.4 Using Glottolog’s Classification as a Gold Standard
For those who wish to use Glottolog’s classifications of the languages of the world as
a gold standard that could be used to help evaluate or improve methods for phylogenetic
classification, trees from Glottolog are automatically added for derived datasets that are
pruned in such a way that all languages referenced by a valid Glottocode in the original
CLDF data are used to extract phylogenetic trees from Glottolog via the PyGlottolog
API (https://pypi.org/project/pyglottolog). The Glottolog tree for a particular derived
dataset is the sub-tree of the full classification from Glottolog comprising exactly the
same Glottocodes (and hence also the same languages) as the derived dataset itself.
This underlines the advantage of providing consistent Glottocodes for all varieties
referenced in particular in CLDF datasets, given that this allows us to retrieve the
information on the phylogenies underlying families in individual samples directly,
without having to resort to any form of manual checking and intervention of this data.
3.5 Dataset Properties
With PyLexibench, we extend the statistics provided in Lexibench by additional
features. The features themselves are related to different kinds of the benchmark, with
some being computed from the multilingual wordlists, and other properties being
computed from the character matrices. As basic wordlist properties, we list the language
family of the languages being compared, the number of concepts, languages, and words,
as well as the average mutual coverage (referring to the percentage of overlap of
individual wordlists in a dataset, introduced in List et al. 2018), and the cognate diversity
of a concept list (comparing the number of cognate sets and the number of words,
introduced in List 2014).

For character matrices, we now compute the sizes of cognate sets per concept
(referred to as charset sizes in the context of bioinformatics), reporting the maximum,
minimum, and median values, as well as the standard deviation for each dataset. This
score, that has not been considered much in linguistic analyses so far, is particularly
useful in detecting coding problems. If, for example, a dataset has an extreme amount
of synonyms — resulting, for example, from an erroneous merger of distinct concepts
–, this may easily end up resulting in extremely large amounts of cognate sets per

https://pypi.org/project/pyglottolog

Häuser et al. 2025 PyLexibench

33

concept, exceeding the number of languages in a dataset. We also report the
polymorphic cell ratio and the polymorphic concept ratio. The former refers to the ratio
between translational equivalents with synonyms (language-concept pairs with more
than one word form) and entries with only one translation. The latter refers to the ratio
of concepts that exhibit at least one case of synonymy and concepts without synonymy
in a wordlist. Finally, we report the average number of concepts that have a translational
equivalent per language variety.
3.6 Implementation and Release Plans
With PyLexibench, we hope to be able to faciliate new releases of Lexibench in the
future. The basic strategy for releasing Lexibench datasets is to install the most recent
version of PyLexibench and then run the basic commands required for a new release in
the command line. The advantage of this practice is that users who wish to release their
own version of Lexibench — using only a selection of the data or providing even more
data than in official releases — can use the workflow along with the PyLexibank
package to either publish their own releases or to supplement the data accompanying
their studies by providing the datasets along with the commands in PyLexibench that
they used to create them. In this way, benchmarks can be targeted to particular studies
instead of having to filter particular parts of the officially released data.

PyLexibench itself is currently available as version 1.0, now yielding version 1.0 of
Lexibench. PyLexibench is curated on Codeberg (https://codeberg.org/
lexibank/pylexibench) and archived with the Python Package Index
(https://pypi.org/project/pylexibench). Lexibench is also curated on Codeberg
(https://codeberg.org/lexibank/lexibench) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15260463).
4 Populating Lexibench using PyLexibench
In order to populate our Lexibench benchmark database using PyLexibench, all that
needs to be done is to (1) install the PyLexibenk package from the Python Package
Index, using a fresh virtual environment, (2) create a folder in which one has to place
the file that contains the information about the datasets that one wants to include in a
given release, and (3) download the most recent Glottolog data via GIT. These steps can
all be easily carried out in the commandline, as shown below.

https://codeberg.org/lexibank/pylexibench
https://codeberg.org/lexibank/pylexibench
https://pypi.org/project/pylexibench
https://doi.org/10.5281/zenodo.15260463

CALCiP Volume 8, Number 1

34

$ pip install pylexibench
$ mkdir lexibench
$ mkdir lexibench/etc/
$ wget https://codeberg.org/lexibank/lexibench/raw/
branch/main/etc/lexibank.tsv
-O lexibench/etc/lexibank.tsv

$ git clone https://github.com/glottolog/glottolog.git
--depth 1 --branch v5.1

The clone of the Glottolog data in this example only fetches the most recent release.
This has the advantage that the download saves a lot of space, since we ignore all the
history.

After these steps have been carried out, it is easy to download the data and to create
the wordlists as a first step of the benchmark creation process. The installation of
PyLexibench creates the command lexibench on the commandline. This command itself
runs via subcommands that carry out different tasks, as shown below.
$ lexibench --repos=lexibench download
$ lexibench --repos=lexibench lingpy_wordlists
--language-threshold=4 --concept-threshold=85
--coverage-threshold=0.45

The first command downloads the original CLDF datasets to the folder downloads in
the lexibench folder, adding some statistics. The second command creates LingPy
wordlists that can be easily processed by the LingPy library (that is taken as the basis
for later conversions).

Based on these wordlists, we can now test two basic methods for automated cognate
detection (as we have also done when presenting the Lexibench benchmark the first
time in Häuser and List 2025), the SCA approach (first presented in List 2012), and the
LexStat approach (also first presented in List 2012, later refined in List 2017). While
SCA can be applied to all wordlists that we sample for Lexibench, LexStat is better
limited to datasets with no more than 50 languages. This is handled by passing the
respective keyword parameters in the command line, as shown below for both
commands. The results will be written to a folder lingpy_cognates along with
statistics that show evaluation scores for both methods. Offering the results of these
tests in this form has the advantage that future tests with novel approaches to cognate
detection can be done without having to rerun the tests with the SCA and the LexStat
baseline, as long as the same data and evaluation methods are being used. When running
the subcommand with the option lexstat, SCA cognates will also be calculated and

Häuser et al. 2025 PyLexibench

35

compared directly to the LexStat cognates (on the sample of datasets with no more than
50 varieties). The results of the command show that LexStat outperforms SCA by two
points in the B-Cubed F-Scores, confirming previous studies (List et al. 2017).
$ lexibench --repos=lexibench lingpy_cognates lexstat
--lexstat-threshold=0.55 --language-threshold=50

An additional subcommand extracts all base phylogenies from Glottolog, based on
the assignment of Glottocodes in the individual CLDF datasets. The resulting
phylogenies are written to files in Newick format in the folder glottolog_trees and can
be compared to automatically inferred phylogenies or to serve as a backbone for
additional methods, such as, for example, ancestral state reconstruction (List 2016,
Jäger and List 2018), or tree-based borrowing detection methods (Nelson-Sathi et al.
2011, List et al. 2014). Since not all languages in the original CLDF data are linked to
Glottolog, the command will also prune the data, retaining only those languages that are
linked to valid Glottocodes.
$ lexibench --repos=lexibench glottolog_trees
--glottolog=glottolog

Having extracted the reference trees from Glottolog, character matrices can be written
to file. When running the subcommand, binary state and multi-state matrices — both
deterministic and stochastic — in standard formats used in bioinformatics will be
produced in two forms, one reflecting the pruned form of the data where all languages
are linked to valid Glottocodes, and one reflecting all languages. Multi-state matrices
are restricted to those cases where the number of cognate sets per concept does not
exceed the maximum number of characters in the basic formats used in bioinformatics
(as mentioned above). The two datasets are written to two different folders, with the
folder character_matrices being used for data containing all language varieties and the
folder character_matrices_compatible being used to store the matrices for datasets that
have been pruned to reflect the Glottolog phylogenies. The command allows to specify
a given Glottolog version. Since we have, however, downloaded only the most recent
version, the specification is not necessary in the command that we use to illustrate the
workflow.
$ lexibench --repos=lexibench character_matrices
--glottolog=glottolog

CALCiP Volume 8, Number 1

36

Having run all these commands accordingly, we are left with a repository that is filled
with several files, including wordlists, phylogenetic trees, and character matrices. This
repository has now also been released as version 1.0 of Lexibench on Codeberg
(https://codeberg.org/lexibank/lexibench.git) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15260463).
5 Conclusion
In this study, we have introduced PyLexibench, a small Python package that provides
a more principled and extended version of the code that we first wrote in order to
populate benchmark data for computational historical linguistics as part of Lexibench.
While there are still many aspects of the package and the benchmark database itself that
remain to be tested more rigorously in the future, we consider the data and the code that
generates the data as useful enough at this point to share them directly in an official first
version. This does not mean that we consider that the code and the data that the code
produces are free from errors. However, we consider them interesting and hopefully
also useful enough to be tested and applied by colleagues working in phylogenetic
reconstruction and other computational approaches in the field of comparative
linguistics.
References
Blum, Frederic, Carlos Barrientos, Johannes Englisch, Robert Forkel, Russell D. Gray, Simon J. Greenhill, ChristophRzymski, and Johann-Mattis List. 2025. Lexibank²: Precomputed Features for Large-Scale Lexical Data. Geneva:Zenodo. https://doi.org/10.5281/zenodo.14800315
Felsenstein, J. 2021. “PHYLIP: Phylogeny Inference Package) [Software, Version 3.698].”https://phylipweb.github.io/phylip/
Forkel, Robert, Johann-Mattis List, Christoph Rzymski, and Guillaume Segerer. 2024. “Linguistic Survey of India andPolyglotta Africana: Two Retrostandardized Digital Editions of Large Historical Collections of MultilingualWordlists.” In Proceedings of the 2024 Joint International Conference on Computational Linguistics, LanguageResources and Evaluation (LREC-COLING 2024), edited by Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste,Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, 10578–83. Torino, Italy: ELRA; ICCL.https://aclanthology.org/2024.lrec-main.925
Geisler, Hans J., and Johann-Mattis List. 2022. “Of Word Families and Language Trees: New and Old Metaphors inStudies on Language History.” Moderna 24 (1-2): 134–48. https://doi.org/10.19272/202201902005
Geisler, Hans, and Johann-Mattis List. 2010. “Beautiful Trees on Unstable Ground. Notes on the Data Problem inLexicostatistics.” In Die Ausbreitung Des Indogermanischen. Thesen Aus Sprachwissenschaft, Archäologie UndGenetik, edited by Heinrich Hettrich. Wiesbaden: Reichert. [preprint, article was never published since volume wascanceled] https://hal.archives-ouvertes.fr/hal-01298493
Greenhill, Simon J., Hannah J. Haynie, Robert M. Ross, Angela Chira, Johann-Mattis List, Lyle Campbell, Carlos A.Botero, and Russell D. Gray. 2023. “A Recent Northern Origin for the Uto-Aztecan Family.” Language 99 (1). 81-107.https://doi.org/10.1353/lan.2023.0006
Hammarström, Harald, Martin Haspelmath, Robert Forkel, and Sebastian Bank. 2024. Glottolog [Dataset, Version 5.1].Leipzig: Max Planck Institute for Evolutionary Anthropology. https://glottolog.org

https://codeberg.org/lexibank/lexibench.git
https://doi.org/10.5281/zenodo.15260463
https://doi.org/10.5281/zenodo.14800315
https://phylipweb.github.io/phylip/
https://aclanthology.org/2024.lrec-main.925
https://doi.org/10.19272/202201902005
https://hal.archives-ouvertes.fr/hal-01298493
https://doi.org/10.1353/lan.2023.0006
https://glottolog.org/

Häuser et al. 2025 PyLexibench

37

Häuser, Luise, and Johann-Mattis List. 2025. “Lexibench: Towards an Improved Collection of Benchmark Data forComputational Historical Linguistics.” Computer-Assisted Language Comparison in Practice 8: 9–16.https://doi.org/10.15475/CALCIP.2025.1.2
Jäger, Gerhard, and Johann-Mattis List. 2018. “Using Ancestral State Reconstruction Methods for OnomasiologicalReconstruction in Multilingual Word Lists.” Language Dynamics and Change 8 (1): 22–54.https://doi.org/10.1163/22105832-00801002
Kassian, Alexei S., Mikhail Zhivlov, George Starostin, Artem A. Trofimov, Petr A. Kocharov, Anna Kuritsyna, andMikhail N. Saenko. 2021. “Rapid Radiation of the Inner Indo-European Languages: An Advanced Approach to Indo-European Lexicostatistics.” Linguistics 59 (4): 949–79. https://doi.org/10.1515/ling-2020-0060
Kozlov, Alexey M, Diego Darriba, Tomáš Flouri, Benoit Morel, and Alexandros Stamatakis. 2019. “RAxML-NG: A Fast,Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference.” Edited by Jonathan Wren.Bioinformatics 35 (21): 4453–55. https://doi.org/10.1093/bioinformatics/btz305
List, Johann-Mattis. 2012. “LexStat. Automatic Detection of Cognates in Multilingual Wordlists.” In Proceedings of theEACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History fromMultilingual Resources, 117–25. Stroudsburg. https://aclanthology.org/W12-0216/
List, Johann-Mattis. 2014. Sequence Comparison in Historical Linguistics. Düsseldorf: Düsseldorf University Press.https://sequencecomparison.github.io
List, Johann-Mattis. 2016. “Beyond Cognacy: Historical Relations Between Words and Their Implication for PhylogeneticReconstruction.” Journal of Language Evolution 1 (2): 119–36. https://doi.org/10.1093/jole/lzw006
List, Johann-Mattis, Simon J. Greenhill, Cormac Anderson, Thomas Mayer, Tiago Tresoldi, and Robert Forkel. 2018.“CLICS². An Improved Database of Cross-Linguistic Colexifications Assembling Lexical Data with Help of Cross-Linguistic Data Formats.” Linguistic Typology 22 (2): 277–306. https://doi.org/10.1515/lingty-2018-0010
List, Johann-Mattis, Simon J. Greenhill, and Russell D. Gray. 2017. “The Potential of Automatic Word Comparison forHistorical Linguistics.” PLOS ONE 12 (1): 1–18. https://doi.org/10.1371/journal.pone.0170046
List, Johann-Mattis, Shijulal Nelson-Sathi, Hans Geisler, and William Martin. 2014. “Networks of Lexical Borrowing andLateral Gene Transfer in Language and Genome Evolution.” Bioessays 36 (2): 141–50.https://doi.org/10.1002/bies.201300096
Maddison, D. R., D. L. Swofford, and W. P. Maddison. 1997. “NEXUS: An Extensible File Format for SystematicInformation.” Syst. Biol. 46 (4): 590–621.
Nelson-Sathi, Shijulal, Johann-Mattis List, Hans Geisler, Heiner Fangerau, Russell D. Gray, William Martin, and TalDagan. 2011. “Networks Uncover Hidden Lexical Borrowing in Indo-European Language Evolution.” Proceedings ofthe Royal Society of London B: Biological Sciences 278 (1713): 1794–1803. https://doi.org/10.1098/rspb.2010.1917
Rama, Taraka, Johann-Mattis List, Johannes Wahle, and Gerhard Jäger. 2018. “Are Automatic Methods for CognateDetection Good Enough for Phylogenetic Reconstruction in Historical Linguistics?” In Proceedings of the NorthAmerican Chapter of the Association of Computational Linguistics, 393–400. https://aclweb.org/anthology/N18-2063
Ronquist, Fredrik, Maxim Teslenko, Paul van der Mark, Daniel L. Ayres, Aaron Darling, Sebastian Höhna, Bret Larget,Liang Liu, Marc A. Suchard, and John P. Huelsenbeck. 2012. “MrBayes 3.2: Efficient Bayesian Phylogenetic Inferenceand Model Choice Across a Large Model Space.” Systematic Biology 61 (3): 539–42.https://doi.org/10.1093/sysbio/sys029
Savelyev, Alexander, and Martine Robbeets. 2020. “Bayesian Phylolinguistics Infers the Internal Structure and the Time-Depth of the Turkic Language Family.” Journal of Language Evolution 5 (1): 39–53.https://doi.org/10.1093/jole/lzz010
Supplementary Material
The code is curated on Codeberg (https://codeberg.org/lexibank/pylexibench.git) and archived with PyPi
(https://pypi.org/project/pylexibench, Version 1.0). The Lexibench data are curated on Codeberg
(https://codeberg.org/lexibank/lexibench.git) and archived with Zenodo (https://doi.org/10.5281/zenodo.15260463,
Version 1.0).
Funding Information
This project has received funding from the European Research Council (ERC) under the European Union's Horizon Europe
research and innovation programme (Grant agreement No. 101044282, JML, and Grant agreement No. 101087081, LH).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

https://doi.org/10.15475/CALCIP.2025.1.2
https://doi.org/10.1163/22105832-00801002
https://doi.org/10.1515/ling-2020-0060
https://doi.org/10.1093/bioinformatics/btz305
https://aclanthology.org/W12-0216/
https://sequencecomparison.github.io/
https://doi.org/10.1093/jole/lzw006
https://doi.org/10.1515/lingty-2018-0010
https://doi.org/10.1371/journal.pone.0170046
https://doi.org/10.1002/bies.201300096
https://doi.org/10.1098/rspb.2010.1917
https://aclweb.org/anthology/N18-2063
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1093/jole/lzz010
https://codeberg.org/lexibank/pylexibench.git
https://pypi.org/project/pylexibench
https://doi.org/10.5281/zenodo.15260463
https://codeberg.org/lexibank/lexibench.git
https://doi.org/10.3030/101087081
https://doi.org/10.3030/101044282

	PyLexibench — Generating Data for Lexibench with a Python Package

	Computational Molecular Evolution Group / DLCE/ Chair for Multilingual Computational Linguistics

	Heidelberg Institute for Theoretical Studies / MPI-EVA Leipzig / University of Passau

	1 Introduction

	2 Background

	3 Materials and Methods

	3.1 CLDF Datasets from the Lexibank Repository

	3.2 The PyLexibank Software Package

	3.3 Construction of Character Matrices

	3.4 Using Glottolog’s Classification as a Gold Standard

	3.5 Dataset Properties

	3.6 Implementation and Release Plans

	4 Populating Lexibench using PyLexibench

	5 Conclusion

	References

